Ecosystem assessment in fisheries:

are we there yet?

We have many different types of food web and multispecies models!

Species-based

Size-based

Communities, ecosystems \& fisheries

Regime, phase and paradigm shifts: making community ecology the basic science for fisheries

Marc Mangel ${ }^{1 *}$ and Phillip S. Levin ${ }^{2}$

"Prediction is always difficult especially about the future"

- Yogi Berra \& Niels Bohr

Looking backward from 2033 they predicted:

[1] Biological reference points will be determined in a multispecies context (eg. Collie \& Gislason, 2001)
[2] Overfishing will be defined from an ecosystem perspective (eg. Murawski 2000, Caddy 2002)
[3] Development of theory for the metrics of community structure and fishing (eg. Rice 2000)
[4] Management Strategy Evaluation - wider range of community and ecosystem models (\& processes)
[5] Using wealth of fisheries data more actively

- hypotheses, experiments
where are we in 2013?

Gaichas et al 2012, MEPS

MODEL: Multispecies Surplus Production with predatory and competitive interactions

Trade-offs between balancing and fishing at Fmsy

BUT Fmsy \& MSY ARE STRONGLY DEPENDENT ON SELECTIVITY, among other things

(eg. environment, model structure)

MODELS:

- Ecopath with Ecosim
- Atlantis

Catch

Biomass

Collapses
Garcia et al. 2012 Science

- Ideas on 'Balanced fishing'

On wider ecosystem consequences of forage fish also see:
Smith et al. Science 2012
Dickey-Collas et al. ICES JMS 2013

[prediction 2 - development of theory]

Effects of fishing on structure - theory

Static size spectra \& trophic pyramidsa review by Trebilco et al. 2013

Fish abundance with no fishing: predictions based on macroecological theory

SIMON JENNINGS and JULIA L. BLANCHARD
Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Lowestoft NR33 OHT, UK

A continuous model of biomass size spectra governed by predation and the effects of fishing on them

Eric Benoit ${ }^{\mathrm{a}}$, Marie-Joëlle Rochet ${ }^{\mathrm{b}, *}$
Size-spectra dynamics from stochastic predation and growth of individuals

Richard Law, ${ }^{1,4}$ Michael J. Plank, ${ }^{2}$ Alex James, ${ }^{2}$ and Julia L. Blanchard ${ }^{3}$
How does abundance scale with body size in coupled size-structured food webs?

Julia L. Blanchard ${ }^{1,2 *}$, Simon Jennings ${ }^{1}$, Richard Law ${ }^{2}$, Matthew D. Castle ${ }^{1,2} \dagger$,
Paul McCloghrie ${ }^{1}$, Marie-Joëlle Rochet ${ }^{3}$ and Eric Benoît ${ }^{4}$

Asymptotic Size Determines Species Abundance in the Marine Size Spectrum
Damped trophic cascades driven by fishing in model marine ecosystems
K. H. Andersen ${ }^{1, *}$ and M. Pedersen ${ }^{2}$

From individuals to populations to communities: A dynamic energy budget model of marine ecosystem size-spectrum including life history diversity Olivier Maury ${ }^{\text {ab,b, }, \text {, Jean-Christophe Poggiale }}{ }^{\text {c, }, 1}$

A Complete Analytic Theory for Structure and Dynamics of
Populations and Communities
Spanning Wide Ranges in
Body Size

Size spectrum theory
Metabolic theory
Macroecology
[prediction 3 - overfishing in an ecosystem context]
MODEL: Ecopath with Ecosim
Ecosystem Resilience \& Thresholds

Samhouri JF, Levin PS, Ainsworth CH (2010) Identifying Thresholds for Ecosystem-Based Management. PLoS ONE 5(1): e8907. doi:10.1371/journal.pone. 0008907
http://www.plosone.org/article/info:doi/10.1371/journal.pone. 0008907

Ecological drivers of resilience from food web \& size spectrum dynamics

 increased resilience (return speed) and stability when:- prey closer to their own size
- have wider diet breadths (generalists)
- larger maturation size, asymptotic size
- weak links
- trait diversity
- connectivity \& coupling

MODELS:
Food web models
Size spectrum models

Law et al. 2009 Ecology, Blanchard et al 2011 Theor Ecol, Plank et al. 2011 Theor Ecol, Zhang et al. 2011 Theor Ecol, Rooney \& McCann 2004

Composition of traits within communities changes in response to fishing

- resilience consequences

trait
(eg. maximum body size, predator-prey mass ratio, diet breadth)
[4 - management strategy \& wider model comparisons]

Atlantis

Fulton et al. 2010 Fish Fish

End-to- end models

Physics to humans

Growing application around the world

Simulation test bed for wider range of human activities, different types of management models, indicators etc.

Models of Intermediate Complexity (MICE)

Plaganyi et al 2012

Next steps needed for advancement of ecosystem models:

1) Structural uncertainty (ensembles, model inference)
2) MUCH more rigorous validation and testing of predictions across time/space scales (experimental tests of assumptions, hypotheses, predictions)
3) Improved open integration of whole ecosystem data and many different models

uncertainty across models

Gårdmark et al. 2013 Ecological Applications
Baltic Sea cod in Ecosystem\& Climate Change Context

uncertainty within models

Multispecies Size Spectrum
3 sub-models calibrated to time-averaged data and cross validated

1. Full feedback
2. Fixed growth
3. Fixed growth
\& predation

Context:
exploring Marine Strategy Framework Directive indicators \& targets

Blanchard, Andersen, Scott, Hintzen, Piet \& Jennings

Use each model to assess population and community baselines and change under past time-varying fishing (forcing)

Set indicator targets and evaluate probability under singlespecies management scenarios

We need to adapt \& evolve models (our thinking)

data

theory

BIG [OPEN] DATA \& MODEL SYNTHESIS

transparency repeatability

http://ropensci.org/

British Ecological Society -
Macroecology \& Computational Ecology Groups International Meeting in Sheffield last week

RAM Legacy, ICES Data Centre, FLR, NCEAS working groups

Some closing thoughts

Diversity of approaches is a good thing - bring on ensembles!

Ecoinformatic tools \& ALL available data - whole ecosystem data analysis

Improved methods fitting models to data (Maximum Likelihood, Bayesian) - learn or collaborate

More rigorous testing and cross validation within and across models across scales - evolve the tools!

The next phase shift:
population -> community/ecosystem -> macroecology

NOAA FISHERIES

Comparing single-species and ecological indicator-based assessments: l approaches for implementing m-based fisheries management indicator-based assessments: practical approaches for implementing cosystem-based fisheries management indicator-based assessments: practical approaches for implementing ecosystem-based fisheries management

Gavin Fay1, Scott Large ${ }^{1}$, Jason Link ${ }^{1}$, Robert Gamble ${ }^{2}$ ${ }^{1}$ Office of the Assistant Administrator ${ }^{2}$ Northeast Fisheries Science Center

Ecosystem Based Fisheries Management

Ecosystem Based Fisheries Management

Indicators as tools for Ecosystem Based Fisheries Management

Indicators provide multidisciplinary perspective on ecosystem condition. Many have been suggested.

Threshold values may reveal system change

Challenge: Translate Indicator thresholds into practical fishery control rules and test performance.

Indicators and Reference points Empirical analysis of Indicator response

Thresholds in Indicators with respect to system drivers
Multiple indicators show change points at similar levels of landings
Large, S. I, Fay, G., Friedland, K. D., and Link, J. S. 2013. Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. - ICES Journal of Marine Science, 70: 755-767.

Can we translate thresholds in indicators to decision criteria for fisheries control rules?

Testing Indicator based control rules using simulation methods (e.g. MSE)

Using thresholds in indicators to set ceilings on total catch

- Time series of indicators from multispecies operating model.
- Values for ceilings obtained from thresholds in indicator/catch relationships.
- Run models with ceilings, calculate performance metrics.

Indicator Thresholds from simulation testing

Values depend on exploitation history.

Thresholds for community composition indicators occur at lower levels of total landings.

Ceilings on system catch based on indicator thresholds

(a) Total biomass

(d) Prop. Overfished

(g) MTL Catch

(b) Total Catch

(e) Prop. Pelagics

(h) MTL Biomass

(c) Catch/Biomass

(f) Prop. Predators

None TotB pPel pPred MTLc

Improved performance with respect to catch and biodiversity objectives.

Testing alternative reference points

- How do combinations of indicators and reference points perform with respect to yield and biodiversity?
- Operating Model: Multispecies Production Model
- Estimation Model(s):

Single species biomass dynamics, and/or Indicators.

Tradeoffs: Indicator-based control rules

Tradeoffs: Indicator-based control rules

End-to-End System Modelling: Atlantis

Full suite of indicators
(including lower trophic level, climate, and socioeconomic)
Linkages to additional models
(physics, climate, regional economy)

Northeast US application

> v1.0 (Link et al. 2010 PiO)
> v1.5 (in development)

1. Used for Scenario testing
2. Not full MSE (yet)
3. As an operating model

Assessments (and management strategies) can be tested given (very) complicated mechanistic dynamics.

Quantifying economic and conservation tradeoffs:

 evaluating fisheries management strategies using multiple criteria

Further work

- Additional methods for assessing indicator response to system drivers and pressures.
- Integrate indicator assessment and control rule into the Atlantis assessment module.
- Run MSE style scenarios with Atlantis as an operating model.

It's all about the Questions

- Indicator-based assessments can complement advice from single-species models and be integrated into fishery control rules.
-What do we mean by assessment performance? Implications for management, robustness.
-What is the type and scale of advice required?

Thank you.

gavin.fay@noaa.gov

An investigation into fisheries interaction effects using Atlantis

Michael Smith

Supervisors: Rob Day (University of Melbourne) Beth Fulton (CSIRO)

THE UNIVERSITY OF
MELBOURNE

Why model an ecosystem?

The $F_{M S Y}$ experiment

Fishing pressure

The $F_{M S Y}$ experiment

The $F_{M S Y}$ experiment: prediction

Exploring $F_{M S Y}$ in Atlantis

- Prediction:
\sum single-spp. MSY $>$ simultaneous MSY
- Our results:
simultaneous MSY $>\sum$ single-spp. MSY

Simultaneous $F_{M S Y}$ vs individual $F_{M S Y}$

Competition interaction between planktivores

Increased carrying capacity (K)

Fishing pressure

Predation interactions

Affected group	Targeted group				
	sm. pelagics	snoek	M. capensis	M. paradoxus	
sm. pelagics	-				
mesopelagics					
snoek	-				
M. capensis	-		-	\approx	
M. paradoxus	\approx		-	-	

Reduced carrying capacity (K)

Fishing pressure

The take-home messages:

- Competition and predation have different importance at different trophic levels.
- Small pelagics dominated the catch for our model
- Results from one system may not be universal

Thank you!

Fishing pressure

What multi species and ecosystem models can do for you - examples from ICES WGSAM

Kempf, A. ${ }^{1}$, Howell, D. ${ }^{2}$, Link, J. ${ }^{3}$, Mackinson, S. ${ }^{4}$ and Rindorf, A. ${ }^{5}$

${ }^{1}$ TI- SF, Palmaille 9, 22761 Hamburg, Germany
${ }^{2}$ IMR, P.O. Box 1870 Nordnes, 5817 Bergen, Norway
${ }^{3}$ NOAA, NMFS, 166 Water St., Woods Hole, MA 02543, USA
${ }^{4}$ CEFAS, Pakefield Road, Lowestoft, Suffolk, NR33 OHT, UK
${ }^{5}$ DTU, Jægersborg Alle 1, DK-2920 Charlottenlund, Denmark

ICES WGSAM (Working Group on Multispecies Assessment Methods)

Experts from many areas in the North Atlantik (Barent Sea, Iceland, US West Atlantic, Canadian West Atlantic, North Sea , Baltic, Celtic Seas, Bay of Biscay, Mediterranean, Black Sea)

Main aim: Model development + integration into practical management advice!

- establishing best practice in multi-species assessment
\rightarrow defining standards for models ("Keyruns")
- identifying and promoting the research needed (e.g., joint stomach sampling projects)
- aligning ToRs with emerging policy needs (e.g., Food Web Indicators, Multi Species MSY)

Main challenge: Communication and processing of complex results

Examples from ICES WGSAM

1. Food web and community indicators to be used in stock assessment and other working groups
2. Advice on MSY in a multi species context
3. Implementing multi species effects in MSE simulations

Food web and community indicators

Natural mortality

Why models?

Alternative and complimentary to survey based indicator estimates Information on why is an indicator changing

Models can be used to predict changes in management

MSY in a multi species context: multiple objectives

Advice on precautionary reference points

MSY in a multi species context: important trade-offs

MSY in a multi species context: important trade-offs

MSY in a multi species context: important trade-offs

Baltic MSY (SMS)

Simulations can delimit the space for sustainable exploitation within acceptable good environmental status. However, inside this space stakeholders have to decide on trade-offs and acceptable risk levels!
\Rightarrow Decision support in a suitable format

Multi species effects

Single species MSE + identify relationships between natural mortality and predator biomass

Simple relationships

 * ${ }^{\text {* }}{ }_{\text {predator,predatora } \boldsymbol{q}, \text { prey,preyage }}$

Pros

- Can be used in single species models
- Relatively easy to use and understand

Cons

- relationships sometimes weak
- Processes (e.g., functional feeding response) will be ignored
- Only valid for historically observed states of the food web

Conclusions: Multi species advice

Advice on community and food web indicators (including natural mortality). Tables of natural mortality and any other relevant parameter must be available for download.

Advice on important interactions and trade offs

Advice on precautionary target fishing mortalities producing close-to-MSY

Advice on limitations of the model results

Thanks for your attention!

DAFIWIT $=-2$

GAP

Connecting Science Stakeholders and Policy

EACTS
Forage Fish Interactions
while balancing ecosystem,
economic and social concerns

Ecosystem Data Criteria for Use in Stock Assessment Models

Jason S. Link, Chris Legault, Tim Essington, André Punt, Steve Cadrin, Richard Methot

The History

- Spencer Baird
- Johan Hjort...
- Thompson Burkenroad debate
- Schaefer's $3^{\text {rd }}$ Tier

The Need

- Broad suites of factors influence LMR stocks
- We don't know relative prominence of the triad unless we look
- More data, tools \& information are available now than ever before

Concerns for Ancillary Data Use in Stock Assessments

- Avoid Extremes
- Meet minimal standards

General Data Types

- Abundance (B, N)
- Aka Surveys
- Biological
- Catch/Landings
- Ecological
- Environmental
- Socioeconomic

Types of Data Use in Stock Assessments

Context

Alter stock information (e.g. Stock ID, area, etc.) Change model parameter choice/defaults Alter other input data to model

Alter structure of model
Scalars/ Magnitude checks
Model covariates
Data inputs
to model

Proposed Core Criteria

- Adequate length of time series (as a fraction of life history [e.g. maturity age] of stock)
- Synoptic coverage of stock, else estimable fraction of geographic coverage
- Variance mainly estimable
- Consistency of collection/sampling protocols, else adequate conversion coefficients
- Relates to key facet of the life history of stock
- Captures main contrasts and dynamics over time and space of major processes affecting stock
- International or regional, "diplomacy" considerations

Criteria \& Use

Data Criteria/Data Use	艹 ¢ ¢ O							$\begin{aligned} & n \\ & 0 \\ & .0 \\ & .0 \\ & \\ & 0 \\ & 0 \end{aligned}$
Length of time series	Lo	Lo	Med	Lo	Lo	Me	Med	Hi
Synoptic coverage of stock	Lo	Med	Med	Lo	Lo	Med	Med	Hi
Variance estimable	Lo	Lo	Med	Lo	Lo	Med	Med	Hi
Consistency of sampling	Lo	Med	Hi	Med	Med	Hi	Hi	Hi
Life history of stock	Lo	Med	Hi	Med	Med	Hi	Hi	Hi
Contrasts and dynamics	Lo	Med	Hi	Med	Med	Hi	Hi	Hi
Diplomacy considerations	Lo	Med	Med	Lo	Med	Med	Med	Med

Example \#1: Habitat \& Climate

E.g., small pelagic fish Consistently sampled temperature, B / N \& C
Well estimated variance Broad spatiotemporal coverage
Captures major changes in thermal habitat of ecosystem over time and space
Known linkages to key life history and physiology

Suggested possible uses of this data stream:

Alter Stock Info
Change model parameters
Scalars/Magnitude Model covariates
Data inputs to model

Example \#2: Trophic Ecology

E.g., invertebrate fishery

Consistently sampled predator stomachs \& B/N, \& C
Variance poorly known of stomachs, catch
Decent spatio-temporal coverage
Strongly suggested links to life history

Suggested possible uses of this data stream:

Context

Change model parameters Alter other input data to model

Alter structure of model Magnitude checks of model outputs/Scalars

Example \#3: Data Poor

Suggested possible uses of this

 data stream:E.g., high diversity reef fish Inconsistently surveyed B / N; Consistent C sampling
Variance hard to estimate
Moderate spatio-temporal coverage
Observed shifts in C \& B distribution
Suspected thermal relationships

Evaluate stock info
Alter other input data
Consider simplifying model structure

Questions?

Multispecies considerations in stock assessments: yes we can

Daniel Howell and Sam Subbey

With thanks to
Lary Alade, Eider Andonegi, Höskuldur Björnsson, Bjarte Bogstad, Alida Bundy, Santiago Cerviño, Jonathan Deroba, Daniel Duplisea, Jim Ianelli,

Alexander Kempf, Jason Link, Éva Plagányi, Jim Penn, Ross Tallman,
Sigurd Tjelmeland, Morten Vinter

Multispecies considerations in stock assessments: yes we do

Daniel Howell and Sam Subbey

With thanks to
Lary Alade, Eider Andonegi, Höskuldur Björnsson, Bjarte Bogstad, Alida Bundy, Santiago Cerviño, Jonathan Deroba, Daniel Duplisea, Jim Ianelli,

Alexander Kempf, Jason Link, Éva Plagányi, Jim Penn, Ross Tallman,
Sigurd Tjelmeland, Morten Vinter

Background

- General legal requirements around the world to manage and protect "the ecosystem"
- ICES 2013 ASC theme session text
- "While there has been much recent progress in the understanding of foodweb dynamics in marine ecosystems, the application of this knowledge in marine management is however, still scarce"
- Perception that this is important, but difficult

Current situation

- We are in a single species asse sment world - No, not always
- We want to be in t'e μ or ised land of "ecosystem assess nents "
- No, not nec ssa ily
- But her is: huge gulf between the two
- No, no eally

Current situation

- We are in a single species assessment world
- No, not always
- Various experimental or exploratory multispecies or ecosystem assessments
- Environmental drivers
- Bottom up effects
- Density dependence
- Variable predation/M2

Current situation

- We are in a single species assessment world
- No, not always
- Various experimental or exploratory multispecies or ecosystem assessments
- Environmental drivers
- Bottom up effects
- Density dependence
- Variable predation/M2

Current situation: take two

- We are using variable predation mortalities in assessments within ICES right now
- And have been for almost 25 years
- Currently around a dozen stocks
- In different ways
- Use "extra" data to derive M variability
- Barents Sea (cod, capelin), North Sea (cod, whiting, herring), Baltic (herring, sprat), Greendlandic shrimp,Atlantic herring, silver hake, walleye pollock, others?

Two types of different approaches

- Within model (extended single species)
- Externally derived predator biomasses and consumption
- Add to single-species model of the prey species
- Calculate the predation mortality directly
- E.g. Barents Sea capelin, Atlantic herring
- External
- Run a multispecies model
- Extract predation-induced mortalities (M2s)
- Import these to single species assessments
- E.g. North Sea, Baltic

Examples

- Three different examples
- Brief overview
- Techniques (how?)
- Rationale (why?)

Example 1: Barents Sea Capelin

- Forage fish, industrial fishery, important prey
- Lives for c.3-4 years in the Barents Sea
- Eaten by cod (among others)
- Start to mature in summer
- Survey maturing fish in early autumn
- Swim south to near coast the following spring
- Spawn and die
- Fished en route with an escapement rule - 95% chance for SSB $>200,000$ tonnes

Example 1: Barents Sea Capelin

- Recognized early in the fishery that variable cod predation was critical in stock assessment
- Cod predation is large and variable
- Have stock assessment of cod
-Extensive annual time series of cod stomachs
- These are incorporated in the capelin model, which calculates cod-induced predation
- Including uncertainties
- First done for assessment in 1990

Example 2: Barents Sea cod

- Cannibalistic
- XSA stock assessment
- Most cannibalism before the fish enter the fishery
- Not required in assessment (straight single species)
- BUT:
- HCR requires three year forecasts
- Cannibalized fish in year 1 are definately important in the fishery by year 3

Example 2: Barents Sea cod

- Ad hoc, no requírement for uncertainty
- Take assessment XSA stock (by age)
- Use with stomach content data to get cannibalism by predator and prey age
- Add cannibalism by prey age in to XSA as an extra "fleet"
- Refit XSA to account for this extra fleet
- Iterate to convergence

Example 3: Baltic

- Similar process cónducted in the North Sea
- Cod predates on sprat, herring and young cod
- Important fishery on all three species
- Fishing on one species noticably impacts the biomass and catch of other species
- Requires going beyond single species assessments and management

Example 3: Baltic

- Run a multi-speciés SMS model key run
- Every 3 years
- Cod as a predator; cod, herring, sprat as prey
- Fixed prey preferences, variable biomasses
- Identify where important interactions occur
- Export smoothed M2 values (for herring and sprat, not cod)
- Import to annual single-species assessment models (SAM)

Strengths/Weaknesses: Within model

- Everything consistent (within same model)
- Gives flexibility
- Easier to validate
- Requires a lot of development and expertise
- Requires good data on predation variability
- Makes medium term forecasts problematic
- Difficult to generalize

Strengths/Weaknesses: external

- Extendable, generalized
- Divides out the work
- Allows medium-term forecasts (model biomasses, fix prey preferences)
- Avoids need for frequent stomach datasets - For better or worse
- Allows the models to be run seperately
- For better or worse
- Moving M2s between models problematic

How is this different from "full" multispecies assessments?

- Can capture (some) key pressures
- Only unidirectional effects
- limits the degree of feedback and interactions
- Allows use by single-species modelling experts

Stepping stone to integrated multispecies assessments?

- Maybe, maybe ñot
- Valuable in and of itself
- Not clear that "integrated" assessments should be the general goal
- Leading to developing competance in extending single-species assessment models
- But still large amount of competance in single species models, much less in multispecies ones

Thoughts on the way forward

- This is already "the norm" for some stocks
- Do what is required (stock, management)
- Key is to use appropriate levels of complexity
- M2 variability may be minor, or it can be critical
- Data may be available or absent
- Management requirements (uncertainties, HCRs,...)
- One size does not fit all
- Needs underlying data
- It is variability that matters here
- Regular (stomach) data to capture variability

Catch-quota balancing regulations in the Icelandic multi-species demersal fishery: are they useful for advancing an ecosystem approach to fisheries?

Catch-quota balancing mechanisms (sanchirice etal 2006)

Q Q trade (permanent or temporary)
\propto csetween-year transfers
Q species transformations
© quota baskets
© cs deemed value fees
Qs surrendur
© [discarding]

Ecosystem?

Ecosystem?

Catch-quota balancing mechanisms (Sanchirice etal 2006)

Q Q trade (permanent or temporary)
\propto between-year transfers
Q_{8} species transformations
© quota baskets
© cs deemed value fees
Qs surrendur
© [discarding]

Iceland as a case study

© V Virtually all managed demersal spp. (\& some nondemersal) included in system.
\propto Rules have been in place for a long time ($\sim 20 \mathrm{yrs}$) and alongside trade and between-year transfers.

Q All fleets managed together (generally).
© Discards illegal.
Q Industry likes them.
\propto_{8} Automatic and subject to limitations.

Catch-quota accounting

Catch-quota accounting

Quota + last
year's transfers

Catch-quota accounting

C.E. conversions; 5\% total overall;

Species

transformations 1.5% total to a sp.

Cod are excluded from system, set as base $=1$.

Quota + last year's transfers

Catch-quota accounting

QR 15% sp. forward; 5\% sp. backward
@ C.E. conversions; 5\% total overall; 1.5% total to a sp.

Cod are excluded from system, set as base $=1$.

Betweenyear transfers

Species transformations

Quota + last year's transfers

Catch-quota accounting

Betweenyear transfers

CR 15% sp. forward;
5\% sp. backward
© C.E. conversions; 5\% total overall; 1.5% total to a sp.

Cod are excluded from system, set as base $=1$.

Species

transformations

Quota + last year's transfers

Some potential problems: abundance imbalance
 \qquad

Some potential problems: value imbalance

$1 / 0.39=2.56$

Goal of this study

Use multi-spp. bioeconomic model to analyze how short-term profit-maximizing behavior affects long-term sustainability \& profitability.

What explains today's fishing patterns?

© Joint production \& fixed ratios among catches: unavoidable bycatch

What explains today's fishing patterns?

\propto Joint production \& fixed ratios among catches: unavoidable bycatch
\propto \& Independent production: no bycatch

What explains today's fishing patterns?

\& Joint production \& fixed ratios among catches: unavoidable bycatch
\propto \& Independent production: no bycatch

Reality lies somewhere in-between

What explains today's fishing patterns?

\propto Joint production \& fixed ratios among catches: unavoidable bycatch

Reality lies somewhere in-between

Model attributes

- eees
\& A Age-structured models for 5 species.

Landings in Iceland

Model attributes

- eees
\& A Age-structured models for 5 species.

Model attributes

\& Age-structured models for 5 species.
\propto © Industry is the single user.

Model attributes

\& Age-structured models for 5 species.
\propto_{8} Industry is the single user.
$\propto<$ Cost linearly increases with the sum of effort over all species.

Model attributes

\propto A Age-structured models for 5 species.
\& Industry is the single user.
$\propto<$ Cost linearly increases with the sum of effort over all species.
$\propto<$ TACs based on $\mathrm{F}_{\text {MSY }}$ and are not binding; penalties invoked when catch surpasses it.

Model attributes

CR Age-structured models for 5 species.
\propto Industry is the single user.
Q Cost linearly increases with the sum of effort over all species.
Q TACs based on $\mathrm{F}_{\text {MSY }}$ and are not binding; penalties invoked when catch surpasses it.
$\propto \mathcal{R}$ Effort optimized to maximize profit each year Profit $=$ Revenue - Cost - Penalties.

Model attributes

Q A Age-structured models for 5 species.
\propto_{\gtrless} Industry is the single user.
∞ Cost linearly increases with the sum of effort over all species.
\propto_{\gtrless} TACs based on $\mathrm{F}_{\text {MSY }}$ and are not binding; penalties invoked when catch surpasses it.

CR Effort optimized to maximize profit each year Profit $=$ Revenue - Cost - Penalties.
\propto Deterministic.

How are species catches related in the model?

LINKED: \& Cost per unit effort.
৫ R Relative catchability.

LINKED:

How are species catches related in the model?

LINKED: \& Cost per unit effort.
cos Relative catchability.
\propto Penalties. (Species transformation accounting)

NOT
LINKED:

How are species catches related in the model?

LINKED: \& Cost per unit effort.
C_{8} Relative catchability.
Co Penalties. (Species transformation accounting)

CR Ecologically.
NOT © Spatially.
LINKED:
\propto Socially (e.g., catch share distributions)

Thought experiment

What is the long-term profitability when:

1. Catchability set so revenue / effort is equal among all species but cod.

Individual MEY

Avg F / Avg F at MSY

Individual to Multi_spp. MEY

Avg F / Avg F at MSY

Thought experiment

What is the long-term profitability when:

1. Catchability set so revenue / effort is equal among all species but cod.

Thought experiment

What is the long-term profitability when:

1. Catchability set so revenue / effort is equal among all species but cod.
2. Increase catchability so that revenue / effort is high for each species.

Individual to Multi_spp. MEY

Avg F / Avg F at MSY

Individual to Multi_spp. MEY

Avg F / Avg F at MSY

Individual to Multi_spp. MEY

Avg F / Avg F at MSY

Individual to Multi_spp. MEY

Avg F / Avg F at MSY

Thought experiment

How do results from longterm profitability compare with an assumption of annual short-term profit $\$ \$ \$$ maximizing behavior?
With and without species transformations implemented?

Multi_spp. MEY to Short-term profit maximization x 60 years

Avg F / Avg F at MSY

Multi_spp. MEY to Short-term profit maximization x 60 years

Avg F / Avg F at MSY

Multi_spp. MEY to Short-term profit maximization $\times 60$ years

Avg F / Avg F at MSY

Multi_spp. MEY to Short-term profit maximization $\times 60$ years

Avg F / Avg F at MSY

Multi_spp. MEY to Short-term profit maximization $\times 60$ years

Avg F / Avg F at MSY

Multi_spp. MEY to Short-term profit maximization $\times 60$ years

Avg F / Avg F at MSY

Multi_spp. MEY to Short-term profit maximization $\times 60$ years

Avg F / Avg F at MSY

Multi_spp. MEY to Short-term profit maximization $\times 60$ years

Avg F / Avg F at MSY

Multi_spp. MEY to Short-term profit maximization $\times 60$ years

Avg F / Avg F at MSY

BUT...TACs rarely exceeded 势

the extreme...why?

BUT...TACs rarely exceeded to

the extreme...why?
∞ Unavoidable bycatch is substantial? More info needed on:
© catchability; metíer components
© © spp.-partitioned costs

BUT...TACs rarely exceeded to

the extreme...why?
∞ Unavoidable bycatch is substantial? More info needed on: © catchability; metíer components Q P spp.-partitioned costs

CP Unpredictable environmental or price fluctuations

BUT...TACs rarely exceeded 势

the extreme...why?
∞ Unavoidable bycatch is substantial? More info needed on: © catchability; metíer components Q P spp.-partitioned costs
ca Unpredictable environmental or price fluctuations
ç Sequential within-year usage.

BUT...TACs rarely exceeded 势

the extreme...why?
© Unavoidable bycatch is substantial? More info needed on:
© catchability; metíer components
CB spp.-partitioned costs
© Unpredictable environmental or price fluctuations

CR Sequential within-year usage.
∞ Is short-term profitability not the only motivator?

Thought experiment

Sustainability or profitability?

One step forward?

One step forward?

CP Yields avenue for formalizing links among species regulations.

One step forward?

C_{3} Yields avenue for formalizing links among species regulations. (Not as complex as highly compartmentalized management strategies?)

One step forward?

CP Yields avenue for formalizing links among species regulations. (Not as complex as highly compartmentalized management strategies?)

Q Highly system-dependent. (Depends on relative profitability).

One step forward?

CB Yields avenue for formalizing links among species regulations. (Not as complex as highly compartmentalized management strategies?)

Q Highly system-dependent. (Depends on relative profitability).

Q Highly values-dependent. (Depends on profitability vs. social benefits vs. acceptable risk.)

One step forward?

CR Yields avenue for formalizing links among species regulations. (Not as complex as highly compartmentalized management strategies?)
© P Highly system-dependent. (Depends on relative profitability).
© Highly values-dependent. (Depends on profitability vs. social benefits vs. acceptable risk.)
© Next step: ADMB. (Optimize HCR or spp. conversion rates?)

Thank you!

© University of Iceland
© University of Washington
\& Northwest Fisheries Science Center

CR RAX photos

Icelandic demersal fisheries

Prospects

Prospects

∞ Data analysis.

Prospects

Co Data analysis.
C Explore how to set TACs or conversion rates to achieve long-term sustainability.

Prospects

Co Data analysis.
cs Explore how to set TACs or conversion rates to achieve long-term sustainability.

CQ Add "component" variation to compartmentalize the constraints.

Prospects

Co Data analysis.
∞ Explore how to set TACs or conversion rates to achieve long-term sustainability.

CQ Add "component" variation to compartmentalize the constraints.

C P Determine effects of

1. cod equivalent misspecification
2. environmental change
3. chronic over-setting of the TAC
4. exchange rate parameterization
